Supplementary Information for Breaking the Upper Bound of Siloxane Uptake: Metal-Organic Frameworks as an Adsorbent Platform

Ezgi Gulcay ()[†]^a, Paul Iacomi ()[†]^a, Youngsang Ko^b, Jong-San Chang^b, Guillaume Rioland ()^c, Sabine Devautour-Vinot ()^a, and Guillaume Maurin ()^a

[†] These authors contributed equally

* E-Mail: guillaume.maurin1@umontpellier.fr

^aICGM, Univ. Montpellier, CNRS, ENSCM, F-34095 Montpellier, France

^bResearch Group for Nanocatalyst (RGN) and Convergent Center for Chemical Process (CCP), Korea Research Institute of Chemical Technology (KRICT), Gajeong-ro 141, Yuseong-gu, Daejeon 34114, South Korea

^cCentre National d'Etudes Spatiales, DSO/AQ/LE, 18 Avenue Edouard Belin, 31401 Toulouse, Cedex 09, France

Contents

1	Corr 1.1 1.2 1.3	Apputational detailsForce field parameters for D4Screening datasetRadial distribution functions for D4/PCN-777	S3 S3 S4 S9
2	MO 2.1 2.2 2.3	F samples MIL-101(Cr) DUT-4 PCN-777	S9 S9 S9 S9
3	D4 s 3.1 3.2	sorption experiments Sorption experiments Sorption benchmarking with known MOFs Sorption of Sorption of D4 Sorption of D4 <td>512 512 512</td>	512 512 512
Re	feren	nces	513

1. Computational details

1.1. Force field parameters for D4. D4 was modelled as a semi-flexible molecule with an all-atom atomistic model. All intramolecular bonds, angles, dihedrals, and cross terms parameters for methyl groups were taken from the consistent-valence force field (CVFF) reminded below. ^{S1}

Harmonic Bond

$$U = \frac{1}{2}p_0(r - p_1)^2$$
 [S1]

where p_0/κ_B in units K/Å², p_1 in Å.

Table S1: D4 bonding potential parameters.				
Pseudo atom	Type of bond	p_0/κ_B (K/Ų)	p1 (Å)	
Si-O	RIGID_BOND	-	-	
Si-C	HARMONIC_BOND	286248.126	1.809	
C3-H	HARMONIC_BOND	409668.576	1.105	

Harmonic Bend

$$U = \frac{1}{2}p_0(\theta_{ijk} - p_1)^2$$
 [S2]

where p_0/κ_B in units K/rad², p_1 in degree.

Table S2: D4 bending potential parameters.				
Pseudo atom	Type of angle	p_0/κ_B (K/rad²)	p_1 (°)	
Si-C-H	HARMONIC_BEND	41614.223	112.3	
C-Si-C	HARMONIC_BEND	53400.911	113.5	
C-Si-O	HARMONIC_BEND	53040.094	117.3	
H-C-H	HARMONIC_BEND	47507.567	106.4	

CVFF Dihedral

$$U = p_0 (1 + \cos(p_1 \phi_{ijk} - p_2))^2$$
[S3]

where p_0/κ_B in units K, p_2 in degree.

Table S3: D4 dihedral potential parameters.				
Pseudo atom	Type of torsion	p_0/κ_B (K)	p_1 (multiplicity)	p_2 (°)
H-C-Si-C	CVFF_DIHEDRAL	240.545	3	0
H-C-Si-O	CVFF_DIHEDRAL	-60.136	3	0
C-Si-O-Si	CVFF_DIHEDRAL	240.545	3	0

CFF Bond Bond Cross

$$U = p_0(r - p_1)(r' - p_2)$$
 [S4]

where p_0/κ_B in units K/Ų, p_1 and p_2 in Å

Table S4: D4 cross-term	bonding	potential	parameters
-------------------------	---------	-----------	------------

Pseudo atom	Type of bond-bond	p_0/κ_B (K/Ų)	p_1 (Å)	p_2 (Å)
Si-C-H	CFF_BOND_BOND_CROSS	14312.406	0	0
C-Si-C	CFF_BOND_BOND_CROSS	7336.612	0	0
C-Si-O	CFF_BOND_BOND_CROSS	25257.188	0	0

$$U = (\theta - p_0)[p_1(r - p_2) + p_3(r' - p_4)]$$
[S5]

where p_0 in degrees, p_1 and p_3 in units K/Å/rad, p_1 and p_2 in Å.

Pseudo atom	Type of bond-angle	po (°)	$p_1~({\rm K}/{\rm \AA}/{\rm rad})$	p_2 (Å)	$p_3~({\rm K}/{ m \AA}/{ m rad})$	p4 (Å)
Si-C-H	CFF_BOND_BEND_CROSS	0	14733.359	0	9742.06	0
C-Si-C	CFF_BOND_BEND_CROSS	0	781.770	0	0	0
C-Si-O	CFF_BOND_BEND_CROSS	0	11425.871	0	27061.27	0

Table S5: D4 cross-term bonding-bending potential parameters.

D4 LJ parameters and charges

The electronic potential (ESP) derived partial charges of D4 were computed by density functional theory (DFT) calculations with PBE (Perdew-Burke-Ernzerhof) functional ^{S2} and DNP (double numeric plus polarization) basis set ^{S3}, using DMol^{3 S4} (Table S6).

Table S6: Charges and LJ parameters for all atoms of D4.

Charge (e⁻)	ϵ/κ_B (K)	σ (Å)
1.321	202.429	3.826
-0.763	30.213	3.118
-0.889	52.873	3.431
0.2032	22.156	2.571
	Charge (e ⁻) 1.321 -0.763 -0.889 0.2032	Charge (e ⁻) ϵ/κ_B (K)1.321202.429-0.76330.213-0.88952.8730.203222.156

1.2. Screening dataset. Material details.

Table S7: Details of the 29 MOFs added to the COREMOF databate	ase
--	-----

MOFs	Reference	MOFs	Reference
RAVWAO	S5	DUT-5	S6
RAVWES	S5	DUT-51-Zr	S7
RAVWIW	S5	DUT-67-Zr	S 8
RAVWOC	S5	MIL-68(AI)	S9
RAVWUI	S5	Cr-soc-MOF-1	S10
RAVXAP	S5	MIP ^[4] -177	S11
RAVXET	S5	MIP-200	S 12
RAVXIX	S5	Zr-IPA ^[5]	S13
MIL-125	S14	Ni-BPM ^[6]	S15
MOF-808-acetate	S14	Ni-BPP ^[7]	S15
MOF-808-formate	S14	Ni-TPM ^[8]	S15
NU ^[1] -1000	S14	Ni-TPP ^[9]	S15
UiO ^[2] -68	S14	Ni-MOF-74	S15
Zr6-AzoBDC ^[3]	S14	PCN ^[10] -224(Ni)	S16

[1]NU: Northwestern University; [2]UiO: University of Oslo;

[3]AzoBDC: azobenzenedicarboxylate;

[4]MIP: Material of the Institute of Porous Materials from Paris;

[5]IPA: isophatale; [6]BPM: biphenyl-meta;

[7]BPP: biphenyl-para; [8]TPM: triphenyl-meta;

[9]TPP: triphenyl-para; [10]PCN: Porous coordination network;

Fig. S1: Overview of the diversity of the MOF database with PLD > 6 Å in terms of void fractions, N_2 accessible surface areas and PLDs. Data points are color coded by PLDs of MOFs. Pore volumes of all structures are represented by size.

Fig. S2: Overview of the diversity of the hydrophobic MOFs database in terms of void fraction and N_2 accessible surface areas. Data points are color coded by PLDs of MOFs. Pore volumes of all structures are represented by size.

Fig. S3: The relation between the gravimetric D4 uptake of the 811 hydrophobic MOFs (g g^{-1}) and their pore volumes (cm³ g^{-1}), color coded by void fraction of the MOFs.

Fig. S4: Predicted D4 uptake performance at 298 K for the hydrophobic MOFs database plotted as a function of their computed Henry constant of water, color coded by void fraction, ϕ . Top performing 10 candidates are represented by different symbols in the legend to the right.

MOF	Details
FOTNIN (PCN-777)	Organic ligand: 4,4',4'-s-triazine-2,4,6-triyl-tribenoic acid
	Metal site: $2r$ PLD: 28.36 Å SA: 2990 m ² g ⁻¹ Density: 0.27 g cm ⁻³ PV: $3.31 \text{ cm}^3 \text{ g}^{-1}$ ϕ : 0.90 Gravimetric D4 uptake: 2.68 g g^{-1} Volumetric D4 uptake: 0.72 g cm^{-3}
RUTNOK (IRMOF-76)	Organic ligand: 4,7-bis(4-carboxylphenyl)-1,3-dimethylbenzimidazium-tetrafluoroborate Metal site: Zn PLD: 14.65 Å SA: $6200 \text{ m}^2 \text{ g}^{-1}$ Density: 0.24 g cm^{-3} PV: $3.72 \text{ cm}^3 \text{ g}^{-1}$ ϕ : 0.90 Gravimetric D4 uptake: 2.57 g g^{-1} Volumetric D4 uptake: 0.62 g cm^{-3}
CUSYAR (MOF-210)	Organic ligand: biphenyl-4,4'-dicarboxylate Metal site: Zn PLD: 12.18 Å SA: $5700 \text{ m}^2 \text{ g}^{-1}$ Density: 0.25 g cm^{-3} PV: $3.65 \text{ cm}^3 \text{ g}^{-1}$ ϕ : 0.90 Gravimetric D4 uptake: 2.35 g g^{-1} Volumetric D4 uptake: 0.59 g cm^{-3}
WUHDAG (NU-1104)	Organic ligand: meso-tetrakis-(4-((phenyl)ethynyl)benzoate) porphyrin Metal site: Zr PLD: 10.50 Å SA: $5500 \text{ m}^2 \text{ g}^{-1}$ Density: 0.29 g cm^{-3} PV: $2.99 \text{ cm}^3 \text{ g}^{-1}$ ϕ : 0.87 Gravimetric D4 uptake: 2.01 g g^{-1} Volumetric D4 uptake: 0.58 g cm^{-3}
HOHMEX	Organic ligand: 4,4'-carbonyldibenzoato - (μ 2-4,4'-bipyridine) Metal site: Cu PLD: 14.89 Å SA: 5000 m ² g ⁻¹ Density: 0.32 g cm ⁻³ PV: 2.74 cm ³ g ⁻¹ ϕ : 0.87 Gravimetric D4 uptake: 1.97 g g ⁻¹ Volumetric D4 uptake: 0.63 g cm ⁻³
ECOKAJ	Organic ligand: s-heptazine tribenzoate Metal site: Zn PLD: 17.58 Å SA: $3600 \text{ m}^2 \text{ g}^{-1}$ Density: 0.33 g cm^{-3} PV: $2.68 \text{ cm}^3 \text{ g}^{-1}$ ϕ : 0.87 Gravimetric D4 uptake: 1.97 g g^{-1} Volumetric D4 uptake: 0.65 g cm^{-3}

DAJWET	Organic ligand: tetrakis (4-carboxylatophenyl) porphyrin Metal site: Mg PLD: 26.59 Å SA: $5000 \text{ m}^2 \text{ g}^{-1}$ Density: 0.28 g cm^{-3} PV: $3.06 \text{ cm}^3 \text{ g}^{-1}$ ϕ : 0.87 Gravimetric D4 uptake: 1.93 g g^{-1} Volumetric D4 uptake: 0.54 g cm^{-3}
RUBDUP	Organic ligand: phenylene ethynylene macrocycle
	Metal site: Zn PLD: 19.25 Å SA: $4200 \text{ m}^2 \text{g}^{-1}$ Density: 0.30 g cm^{-3} PV: $2.90 \text{ cm}^3 \text{g}^{-1}$ ϕ : 0.87 Gravimetric D4 uptake: 1.93 g g^{-1} Volumetric D4 uptake: 0.58 g cm^{-3}
WUHCUZ (NU-1103)	Organic ligand: 4,4',4''.4'''-((pyrene-1,3,6,8 tetrayltetrakis(benzene-4,1-diyl)) tetrakis(ethyne-2,1 diyl))tetrabenzoate
	Metal site: Zr PLD: 12.21 Å SA: $5500 \text{ m}^2 \text{g}^{-1}$ Density: 0.30 g cm^{-3} PV: $2.91 \text{ cm}^3 \text{g}^{-1}$ ϕ : 0.87 Gravimetric D4 uptake: 1.80 g g^{-1} Volumetric D4 uptake: 0.54 g cm^{-3}
ADATAC	Organic ligand:
	5,5,5 -(4,4,4, -[1,3,5-pnenyitris(metnoxy)] tris-pnenyiazo) tris-isophthalic acid Metal site: Zn PLD: 10.28 Å SA: $5130 \text{ m}^2 \text{g}^{-1}$ Density: 0.34 g cm ⁻³ PV: 2.57 cm ³ g ⁻¹ ϕ : 0.87 Gravimetric D4 uptake: $1.68 \text{ g} \text{g}^{-1}$ Volumetric D4 uptake: $0.57 \text{ g} \text{ cm}^{-3}$

Table S9: Discussion on MOF selection.

Refcode	Given name	Observation	Reference
RUTNOK	IRMOF-76	Synthesis results in interpenetrated nets and the materials cannot be activated.	S17
CUSYAR	MOF-210	Material requires supercritical CO_2 activation, otherwise it collapses upon solvent removal.	S18
WUHDAG	NU-1104	Complex tetratopic porphyrin linker, difficult to synthesize and scale, and supercritical CO_2 activation is required.	S19
HOHMEX	SNU-6	The difference between our predicted and as-synthesized pore volume for this MOF was found as 2.74 vs $1.05 \text{ cm}^3 \text{ g}^{-1}$, respectively. Moreover, air exposure was reported to reduce significantly its H ₂ capacity, highlighting water instability.	S20
WIHCUZ	NU-1103	Complex tetratopic conjugated pyrene core linker, difficult to synthesize and scale and supercritical CO_2 activation is required.	S19

1.3. Radial distribution functions for D4/PCN-777. Calculated at specified loading.

Fig. S5: All-atom averaged radial distribution functions between (a) H atom from CH_3 group of D4 molecules and H atom from coordinated water of the framework at 10% total loading and (b) H atom from CH_3 groups of D4 at 100% loading.

2. MOF samples

2.1. MIL-101(Cr). The benchmark MIL-101(Cr) sample was taken from a previous work ^{S21}, with all textural characteristics as stated in reference.

2.2. DUT-4. DUT-4 was purchased from Materials Center (TU Dresden, Germany).

Fig. S6: Characterization of the DUT-4 sample, in duplicates as black and blue: (a) PXRD, alongside simulated pattern in red (b) TGA curves and (c) N_2 physisorption isotherms at 77 K.

2.3. PCN-777. Synthesis

To synthesize the PCN-777, $ZrOCl_2 \cdot 8 H_2O(1.08 \text{ g}, 3.351 \text{ mmol})$ and 4,4',4"-s-Triazine-2,4,6-triyl-tribenzoic acid (0.270 g, 0.612 mmol) were put into 36 ml N,N-Diethylformamide (DEF) in a 100 ml Teflon-lined autoclave reactor, alongside an amount of trifluoroacetic acid (1.8 ml) to form a reaction solution. After sonicating the reaction solution at room temperature for 10 min, the reactor was transferred to a convection oven followed by heating at 423 K for 12 h. The PCN-777 crystalline solid was recovered by filtration after purification with 100 ml N,N-Dimethylformamide (DMF) and acetone for 3 h at room temperature. The collected crystalline solid was dried at 393 K for 12 h.

Fig. S7: Thermogravimetric curve recorded on as-synthesised PCN-777.

Fig. S8: Nitrogen sorption isotherms at 77 K for the pristine PCN-777, alongside with those measured on samples after D4 and water sorption.

Fig. S9: BET and Rouquerol plots displaying selection of applicable isotherm points for the pristine PCN-777 isotherm.

3. D4 sorption experiments

3.1. D4 benchmarking with known MOFs. Isotherms were recorded on benchmark materials MIL-101(Cr) and DUT-4 using the same methodology detailed in the main manuscript.

Fig. S10: D4 isotherms recorded on samples of MIL-101(Cr) (red) and DUT-4 (blue), used to validate our computational methodology for predicting total D4 capacity. Note the different desorption behavior (open symbols) of the two materials under secondary vacuum: partial desorption for MIL-101(Cr) and no desorption for DUT-4.

3.2. Isosteric heat of sorption of D4. A further isotherm was recorded at 313 K (40 °C) to allow for the calculation of the isosteric heat of adsorption through the Clausius-Clapeyron equation, as depicted in Fig. S11.

Fig. S11: D4 sorption isotherms on PCN-777 recorded at 303 K (blue) and at 313 K (green) in an absolute (a) and relative (b) pressure scale. (c) The calculated isosteric heat of adsorption as a function of D4 uptake.

References

- (S1) Dauber-Osguthorpe, P.; Roberts, V.A.; Osguthorpe, D.J.; Wolff, J.; Genest, M.; and Hagler, A.T. "Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate Reductase-Trimethoprim, a Drug-Receptor system." Proteins: Struct, Funct, Bioinf, 1988. 4(1):31-47
- (S2) Perdew, J.P.; Burke, K.; and Ernzerhof, M. "Generalized Gradient Approximation Made Simple." *Physical Review Letters*, 1996. 77(18):3865–3868. doi:10.1103/PhysRevLett.77.3865
 (S3) Hehre, W.J.; Ditchfield, R.; and Pople, J.A. "Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules." *J Chem Phys*, 1972. 56(5):2257–2261
- (S4) Delley, B. "An All-electron numerical method for solving the local density functional for polyatomic molecules." J Chem Phys, 1990. 92(1):508–517
- (S5) Gulcay, E. and Erucar, I. "Biocompatible MOFs for storage and separation of O2: A molecular simulation study." Ind Eng Chem Res, 2019. 58(8):3225-3237
- (S6) Senkovska, I.; Hoffmann, F.; Fröba, M.; Getzschmann, J.; Böhlmann, W.; and Kaskel, S. "New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc=2,6-naphthalene dicarboxylate) and Al(OH)(bpdc) (bpdc=4,4'-biphenyl dicarboxylate)." *Microporous and Mesoporous Materials*, 2009. 122(1-3):93– 98. doi:10.1016/j.micromeso.2009.02.020
- (S7) Bon, V.; Senkovskyy, V.; Senkovska, I.; and Kaskel, S. "Zr(iv) and Hf(iv) based metal-organic frameworks with reo-topology." Chem Commun, 2012. 48(67):8407. doi:10.1039/c2cc34246d
- (S8) Bon, V.; Senkovska, I.; Baburin, I.A.; and Kaskel, S. "Zr- and Hf-Based Metal–Organic Frameworks: Tracking Down the Polymorphism." Crystal Growth & Design, 2013. 13(3):1231–1237. doi:10.1021/cg301691d
- (S9) Yang, Q.; Vaesen, S.; Vishnuvarthan, M.; Ragon, F.; Serre, C.; Vimont, A.; Daturi, M.; De Weireld, G.; and Maurin, G. "Probing the adsorption performance of the hybrid porous MIL-68(AI): A synergic combination of experimental and modelling tools." *Journal of Materials Chemistry*, 2012. 22(20):10210. doi:10.1039/c2jm15609a
- (S10) Nandi, S.; Aggarwal, H.; Wahiduzzaman, M.; Belmabkhout, Y.; Maurin, G.; Eddaoudi, M.; and Devautour-Vinot, S. "Revisiting the water sorption isotherm of MOF using electrical measurements." Chem Commun, 2019. 55(88):13251–13254
- (S11) Wang, S.; Kitao, T.; Guillou, N.; Wahiduzzaman, M.; Martineau-Corcos, C.; Nouar, F.; Tissot, A.; Binet, L.; Ramsahye, N.; Devautour-Vinot, S.; Kitagawa, S.; Seki, S.; Tsutsui, Y.; Briois, V.; Steunou, N.; Maurin, G.; Uemura, T.; and Serre, C. "A phase transformable ultrastable titanium-carboxylate framework for photoconduction." *Nature Communications*, 2018. **9**(1). doi:10.1038/s41467-018-04034-w
- (S12) Wang, S.; Lee, J.S.; Wahiduzzaman, M.; Park, J.; Muschi, M.; Martineau-Corcos, C.; Tissot, A.; Cho, K.H.; Marrot, J.; Shepard, W.; Maurin, G.; Chang, J.S.; and Serre, C. "A robust large-pore zirconium carboxylate metal–organic framework for energy-efficient water-sorption-driven refrigeration." Nat Energy, 2018. 3(11):985–993. doi:10.1038/s41560-018-0261-6
- (S13) Wang, S.; Chen, L.; Wahiduzzaman, M.; Tissot, A.; Zhou, L.; Ibarra, I.A.; Gutiérrez-Alejandre, A.; Lee, J.S.; Chang, J.S.; Liu, Z.; Marrot, J.; Shepard, W.; Maurin, G.; Xu, Q.; and Serre, C. "A Mesoporous Zirconium-Isophthalate Multifunctional Platform." *Matter*, 2020. p. S2590238520305634. doi:10.1016/j.matt.2020.10.009
- (S14) Soares, C.V.; Leitão, A.; and Maurin, G. "Computational evaluation of the chemical warfare agents capture performances of robust MOFs." *Microporous Mesoporous Mater*, 2019. 280:97–104. doi:10.1016/j.micromeso.2019.01.046
- (S15) Zheng, J.; Barpaga, D.; Trump, B.A.; Shetty, M.; Fan, Y.; Bhattacharya, P.; Jenks, J.J.; Su, C.Y.; Brown, C.M.; Maurin, G.; McGrail, B.P.; and Motkuri, R.K. "Molecular Insight into Fluorocarbon Adsorption in Pore Expanded Metal–Organic Framework Analogs." J Am Chem Soc, 2020. 142(6):3002–3012. doi:10.1021/jacs.9b11963
- (S16) Feng, D.; Chung, W.C.; Wei, Z.; Gu, Z.Y.; Jiang, H.L.; Chen, Y.P.; Darensbourg, D.J.; and Zhou, H.C. "Construction of Ultrastable Porphyrin Zr Metal–Organic Frameworks through Linker Elimination." J Am Chem Soc, 2013. 135(45):17105–17110. doi:10.1021/ja408084j
- (S17) Oisaki, K.; Li, Q.; Furukawa, H.; Czaja, A.U.; and Yaghi, O.M. "A Metal-organic framework with covalently bound organometallic complexes." J Am Chem Soc, 2010. 132(27):9262–9264. doi:10.1021/ja103016y
- (S18) Furukawa, H.; Ko, N.; Go, Y.B.; Aratani, N.; Choi, S.B.; Choi, E.; Yazaydin, A.O.; Snurr, R.Q.; O'Keeffe, M.; Kim, J.; and Yaghi, O.M. "Ultrahigh Porosity in Metal-Organic Frameworks." Science, 2010. 329(5990):424–428. doi:10.1126/science.1192160
- (S19) Wang, T.C.; Bury, W.; Gómez-Gualdrón, D.A.; Vermeulen, N.A.; Mondloch, J.E.; Deria, P.; Zhang, K.; Moghadam, P.Z.; Sarjeant, A.A.; and Snurr, R.Q. "Ultrahigh surface area zirconium MOFs and insights into the applicability of the BET theory." J Am Chem Soc, 2015. 137(10):3585–3591. doi:10.1021/ja512973b
- (S20) Park, H.J. and Suh, M.P. "Mixed-Ligand Metal-Organic Frameworks with Large Pores: Gas Sorption Properties and Single-Crystal-to-Single-Crystal Transformation on Guest Exchange." Chem Eur J, 2008. 14(29):8812–8821. doi:10.1002/chem.200801064
- (S21) Pillai, R.S.; Yoon, J.W.; Lee, S.J.; Hwang, Y.K.; Bae, Y.S.; Chang, J.S.; and Maurin, G. "N 2 Capture Performances of the Hybrid Porous MIL-101(Cr): From Prediction toward Experimental Testing." J Phys Chem C, 2017. 121(40):22130–22138. doi:10.1021/acs.jpcc.7b07029